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Abstract
There is an increasing need for accurate quanti-
tative assessment of the performance of predic-
tion models (such as deep neural networks), out-
of-sample, e.g., in new environments after they
have been trained. In this context we propose a
Bayesian framework for assessing performance
characteristics of black-box classifiers, perform-
ing inference on quantities such as accuracy and
calibration bias. We demonstrate the approach
using three deep neural networks applied to large
real-world data sets, performing inference and ac-
tive learning to assess class-specific performance.

1. Introduction
Deep learning models are now being applied to a variety
of practical problems ranging from diagnosis of medical
images (Kermany et al., 2018) to autonomous driving (Du
et al., 2017). As a result, software systems with embedded
machine learning components are likely to become rela-
tively commonplace in the future. Many of these machine
learning predictors will be, in effect, black-boxes from the
perspective of the humans that are using them. For example,
predictive models can be developed remotely by some com-
mercial entity and the models may be hosted as a service
in the cloud (Sanyal et al., 2018). For a variety of reasons
(legal, cost, industry competition), the human user will often
have no access to the detailed workings of the model, how
the model was trained, or the data the model was trained on.

In this context it is increasingly important to develop tech-
niques that can provide accurate and robust assessments of
the quality of a model’s predictions. However, it is well-
known that the “self-confidence” estimates provided by ma-
chine learning predictors can often be quite unreliable and
miscalibrated (Zadrozny & Elkan, 2002; Kull et al., 2017).
In particular, complex models such as deep networks with
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high-dimensional inputs x (such as images or text) can be
significantly overconfident in practice (Gal & Ghahramani,
2016; Guo et al., 2017; Lakshminarayanan et al., 2017;
Kuleshov et al., 2018; Keren et al., 2018).

Independent assessment of accuracy and confidence for a
predictor (rather than self-reported confidence or recalibra-
tion) will likely become increasingly important in the future.
By independent we mean assessment that is carried out
independently from training procedures, perhaps by individ-
uals/organizations not involved in training the model, in a
manner similar to the assessments of commercial products
carried out by regulatory agencies. Reasons for indepen-
dent assessment include regulatory or legal reasons that may
mandate independent assessment of models, the need for
building trust on the part of a human consumer of model
predictions, or situations where the predictor is being used
in an environment p(x, y) which is different to the joint
distribution characterizing the training environment.

In this workshop paper we present early results on the devel-
opment of Bayesian approaches for independent assessment
of the quality of black-box predictors, focusing on accuracy
and calibration bias for classification models. We develop a
number of concepts that underlie our proposed framework
and illustrate the potential approach using image and text
classification datasets. We view our paper as preliminary
work that should spur further discussion and interest among
attendees of this workshop.

2. Related Work
While there is plenty of prior work in machine learning on
calibration and recalibration methods for classification mod-
els, there is relatively little work on quantifying uncertainty
in this context. Goutte & Gaussier (2005) proposed the use
of Bayesian estimation of precision and recall in an infor-
mation retrieval context—our work extends the Bayesian
framework to a broader perspective on classifier accuracy
and calibration. More recently Vaicenavicius et al. (2019)
proposed a general framework for evaluating calibration for
classification models, including the use of the bootstrap to
obtain confidence intervals on the degree of miscalibration
of a model. Their approach builds on earlier work that also
proposed the bootstrap in a calibration context (Bröcker &
Smith, 2007). Our paper can be viewed as the Bayesian
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alternative to these frequentist perspectives on calibration
assessment, as well as extending to analysis of classifier
accuracy in various forms.

3. Framework and Notation
Consider a classification problem with a feature space x and
a class label y takingK values, e.g., classifying image pixels
x into one of K classes. We have a prediction model M
that has already been trained on training data and that makes
predictions yM ∈ {1, . . . ,K} given a feature vector x. We
assume that the model can also produce numerical scores per
class reflecting its confidence, typically in the form of a set
of class probabilities pM (y = k|x), k = 1, . . . ,K. These
scores or probabilities in general need not be calibrated, i.e.,
they need not match the true probabilities p(y = k|x).

We focus on the problems of Bayesian estimation of the per-
formance of the model M on future data drawn from some
distribution p(x, y). We are interested in the situation where
the model M is a black-box, where we can observe the
inputs x and the outputs pM (y = k|x), but don’t have any
other information about the inner-workings of M . While
our assessment framework is Bayesian, the prediction scores
could be coming from any black-box model (including both
Bayesian or non-Bayesian predictive models).

Let k∗ = arg maxk pM (y = k|x) denote the model M ’s
label prediction when the input is x. We assume that
the prediction model implements a deterministic mapping1

from the input space x to k∗ . The input space x is,
thus, partitioned by the model into K decision regions
Rk∗ , k∗ = 1, . . . ,K. We can define K corresponding con-
ditional densities p(x|k∗), which are the (normalized) den-
sities of x conditioned on the fact that class k∗ is predicted
by the model M , i.e., that x ∈ Rk.

We define sM (x) = pM (y = k∗|x) = maxk pM (y = k|x)
as the score of the model as a function of x, i.e., the
class probability that the model produces for its predic-
tion k∗ given input x. Under this notation, an expression
such as Ep(x|k∗)[sM (x)] can be interpreted as the expected
value of the model’s score given that it predicts class k∗,
averaging over the x values in decision region Rk∗ , i.e.,
Ep(x|k∗)[sM (x)] =

∫
sM (x)p(x|k∗)dx.

4. Local and Classwise Accuracy and
Calibration Error

The local accuracy of a model can be defined (in theory)
at any input point x as AM (x) = p(y = k∗|x) where
p(y|x) is the true uncertainty in y conditioned on x. This is
contrast with sM (x) which is the model’s own assessment

1And assume for convenience that ties in the model’s class
scores pM (y = k|x) are resolved deterministically.

of its accuracy at x. The expected accuracy of the model
over the whole x space is Ep(x)[p(y = k∗|x)] =

∫
p(y =

k∗|x)p(x)dx. In machine learning this is typically esti-
mated empirically on a test data set by drawing S samples
randomly from p(x, y) and computing 1

S

∑S
i=1 I(yi, k

∗
i )

where k∗i is the class predicted by the model given xi.

We can also define the local calibration error CE(x) of
a prediction model as a function of x (see also Vaice-
navicius et al. (2019)). CEM (x) is the difference be-
tween the model’s true accuracy AM (x) and the model’s
own estimate of its accuracy at x, pM (y = k∗|x), i.e.,
CEM (x) = ∆

(
sM (x) − AM (x)

)
= ∆

(
pM (y =

k∗|x), p(y = k∗|x)
)
, where ∆(a, b) is some error measure

such as absolute error.

We can marginalize over x to compute the expected accu-
racy or calibration error per predicted class k∗, expressed
as conditional expectations Ak∗ = Ep(x|k∗)[AM (x)] and
CEk∗ = Ep(x|k∗)[CEM (x)], respectively, where the ex-
pectation is with respect to x values in decision region Rk∗ ,
i.e., conditioned on class k∗ being the predicted class2. For
a visual illustration of these ideas for a toy one-dimensional
problem see Appendix A in the Supplement.

Performance measures such as calibration error and accu-
racy per predicted class can be useful in practice to a human
user, for example in situations when the model’s predictions
and probabilities are being used in a downstream applica-
tion to make critical decisions with different costs (such as
autonomous driving or medical diagnosis). Also of interest
is the situation where the test environment p(x, y) may dif-
fer significantly to the environment the model was trained
on and where robust performance measures per class can
provide a decision-maker with an important summary of
how a model will perform on different predicted classes.

As an aside we note that calibration error is often expressed
in the literature as a function of the model’s score, in the
form CE(sM ), providing the basis for reliability diagrams
with the score on the x-axis and the model’s accuracy on the
y-axis (e.g., Guo et al. (2017)). The Bayesian framework
we propose can be extended to Bayesian estimation of such
functions, either bin-based or continuous (using for example
Gaussian processes)—in this short paper we just focus on
per-class performance measures.

5. Bayesian Estimation of Accuracy and
Calibration

To estimate the accuracy Ak∗ = Ep(x|k∗)[AM (x)] from
data empirically, we can approximate the integral empiri-

2To get the accuracy or calibration error per true class k the
expectations can be defined with respect to p(x|y = k) rather than
p(x|k∗).



Bayesian Evaluation of Black-Box Classifiers

0.25 0.50 0.75 1.00

lizard
seal

otter
shrew

boy
bear

woman
couch
shark
baby

...
bicycle

castle
pickup truck

apple
skunk

palm tree
wardrobe

motorcycle
sunflower
keyboard

Accuracy

0.00 0.15 0.30

Calibration Bias

Figure 1. Mean posterior estimate and 95% credible intervals for
the classwise accuracy and calibration bias of Resnet-110 predic-
tions on CIFAR-100. Overlapping bars indicate uncertainty about
the difference between classes. Generally, differences are signifi-
cant between classes in the top/bottom cohorts, but insignificant
within the cohorts.

cally by sampling x, y pairs from the conditional distribu-
tion p(x, y|k∗). The standard approach would be to treat
Ak∗ as an unknown Bernoulli parameter, with draws (xi, yi)
leading to binary outcomes I(yi, k

∗) ∈ {0, 1}, allowing
computation of a frequency-based (maximum likelihood) es-
timate: Âk∗ = 1

S

∑S
i=1A(xi) = 1

S

∑S
i=1 I(yi, k

∗), where
k∗ is the model’s prediction for each of the xi’s.

It is natural to consider Bayesian estimation in this context,
especially in situations where there is not a large amount
of labeled data available for evaluation and/or where K
is large, allowing for uncertainty in our inferences about
quantities such as Ak∗ . In particular, we can put a Beta
prior Beta(α, β) on Ak∗ , model the draws I(yi, k

∗) with a
binomial likelihood, and produce Beta posteriors for each
Ak∗ , k∗ = 1, . . . ,K.

For calibration, the frequency-based estimate of expected
calibration error per class can be written as

ĈEk∗ =
1

S

S∑
i=1

CE(xi) =
1

S

S∑
i=1

∆
(
sM (x), AM (x)

)
.

For simplicity, we focus just on the calibration bias per
class, where ∆ is defined as sM (x)−AM (x), which in turn
leads to CEk∗ = Ep(x|k∗)[sM (x)] − Ak∗ . We will assume
that the uncertainty in estimating CEk∗ will be dominated
by the second term, Ak∗ since it requires labeled examples,
whereas the first term (the average score for the model when
class k∗ is predicted) can be estimated from unlabeled ex-
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Figure 2. Posterior probabilities of the most and least accurate
predictions on CIFAR-100. The most accurate predicted class is
somewhat uncertain, while the least accurate predicted class is
very likely lizard.

amples alone and thus, one can drive uncertainty about this
term to zero with enough unlabeled data.

6. Illustrative Results
6.1. Experimental Setup

In this section we apply the framework presented in the
previous section to evaluate the classwise accuracy and cali-
bration bias of a deep residual neural network (ResNet) (He
et al., 2016) on CIFAR-100 (Krizhevsky & Hinton, 2009), a
standard benchmark for deep model assessment (Guo et al.,
2017; Hendrycks & Dietterich, 2019). The ResNet model
we use has 110 layers and 1.7 million parameters.

We also carry out additional experiments on the SVHN (Net-
zer et al., 2011) dataset, and a medical dialog classification
dataset (Tai-Seale et al., 2016). For the sake of brevity, the
details and results of these experiments are included in the
Supplementary Materials.

6.2. Classwise Accuracy and Calibration Bias

For illustration, we apply the beta-binomial model discussed
in Section 5 to measure classwise accuracies and calibra-
tion bias on CIFAR-100 using the entire test dataset of 10k
examples. Mean posterior estimates (MPE) and 95% cred-
ible intervals for the ten most and least accurate classes
(according to MPE) are plotted in Figure 1. We observe (by
examining overlapping credible intervals) that it is uncertain
which class is truly most accurate, whereas it is highly likely
that model performance is much better on the top ten classes
than it is on the bottom ten. We draw similar conclusions for
calibration bias, which is not surprising given that classwise
accuracy and calibration bias are highly correlated.

Interestingly, we also observe that there is possibly no cal-
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Algorithm 1 Thompson Sampling Strategy
Input: prior hyperparameters α, β
initialize nk,0 = nk,1 = 0 for k = 1 to K
repeat

for k = 1 to K do
Âk ∼ Beta(α+ nk,0, β + nk,1)

end for
k∗ = arg mink Â1:K

select data point (x, ŷ = k∗)
query oracle for true label y
if y = k∗ then
nk,0 ← nk,0 + 1

else
nk,1 ← nk,1 + 1

end if
until all data labeled

ibration bias on the most accurate classes (i.e., the poste-
rior probability density for their calibration bias is centered
near 0), while there is clear evidence that the least accurate
classes are biased. This implies that recalibration may only
be necessary for certain predicted classes, an observation
which is also supported by recent results by Vaicenavicius
et al. (2019).

An additional benefit of the Bayesian framework is that we
can draw samples from the posterior to infer other statis-
tics of interest from the posterior distribution of calibration
measures. For instance, we can estimate the probability
that lizard is the least accurate predicted class by sampling
Âk∗’s (from their respective posterior Beta densities) for
each of the classes and then measuring whether Âlizard

is the minimum of the sampled values. Running this ex-
periment 10,000 times and then averaging the results, we
determine that there is a 68.25% chance that lizard is the
least accurate class predicted by this model. The poste-
rior probabilities for other classes are provided in Figure 2,
along with results for estimating which class has the highest
classwise accuracy.

6.3. Active Learning to Find Extreme Classes

In the previous section, we assume access to ground truth
labels for all of the test data to perform model assessment.
This is unrealistic in many real world scenarios as obtaining
ground truth labels can be costly (one of the main reasons
black-box models are used to begin with). Accordingly, it is
desirable for model assessment to be performed online in a
data efficient manner.

The Bayesian framework we’ve presented is amenable to
designing active learning strategies for data selection that
achieve this goal. As an example, suppose we want to deter-
mine the class with the worst classwise accuracy. To do this

Active

Random

Active

Random

Figure 3. Success rates of active learning vs. a random selection
strategy for determining the least accurate and most biased pre-
dicted classes on CIFAR-100, collected over 100 runs. The active
learning strategy is able to identify the least accurate class (lizard)
much quicker than using random selection.

we can utilize the beta-binomial model from the previous
section in conjunction with Thompson sampling (Thomp-
son, 1933), a method typically employed to solve the multi-
armed bandit problem. A detailed description of the strategy
is given in Algorithm 1.

Aggregate results for 100 independent trials of this strategy
on CIFAR-100 are given in Figure 3. The x-axis measures
the number of queries made to the oracle to obtain ground
truth labels. The y-axis measures the fraction of runs where
the correct class was identified as the having the lowest
expected accuracy according to MPE. As a baseline we also
include results for when data points are selected at random.

Our results demonstrate that the active learning approach
is much more effective at identifying the least likely class.
In all of the trials, the correct class is identified within
3000 queries. In contrast, the random selection strategy
sometimes labels almost all of the data before identifying
the correct class.

7. Conclusions
This abstract describes a Bayesian framework for assessing
performance metrics of black-box classifiers, focusing in
particular on classification accuracy and calibration bias. We
illustrated a number of different ways that the framework
can be used to understand performance aspects of three
deep learning models and datasets. There multiple potential
extensions of the approach for future work such as Bayesian
estimation of continuous functions related to accuracy and
calibration.
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Input Train / Test Classes Balanced

CIFAR-100 Image 50K / 10K 100 3
SVHN Image 600K / 100K 10 3
Dialog Text 110K / 12K 27 7

Table 1. Dataset statistics.

Supplemental Materials
Appendix 1: Notation for a One-Dimensional Problem

Figure 4 provides an illustration of the notation used in
the paper for a simple two-class problem, y ∈ {1, 2}, with
a one-dimensional input feature x. The data-generating
mechanism for class 1, p(x|y = 1) is assumed to be Normal
density N(µ = 5;σ = 1), and for class 2, p(x|y = 2), a
Gamma density Gamma(a = 2, b = 2), with both classes
assumed to be equally likely, i.e., p(y1) = p(y2) = 0.5.
The optimal decision region for classifying x into class 1 is
shaded in gray on all 4 plots.

Figure 4. Illustration of notation for a simple classification prob-
lem with two classes and one input feature x. The optimal de-
cision region R1 for class 1 is shown shaded in gray for all 4
panels. Top panel: posterior class probabilities as a function
of x. Second panel: Accuracy AM (x) and the model’s score
sM (x) = maxk{PM (y = k|x)}. Third panel: Calibration bias
sM (x)−AM (x). Bottom panel: marginal density for x.

The top panel shows the true class probabilities for this
problem. The second panel shows the maximum of the
two true class probabilities as a function of x (solid black
line): this is the true accuracy AM (x). The dotted line in
the second panel shows scores sM (x) from a hypothetical
model M , where sM (x) = maxk{PM (y = k|x)}. For
simplicity it is assumed that this model has learned the
optimal decision boundaries exactly, but its predictions are
over-confident (miscalibrated), i.e., it generates probabilities
that tend to be higher than the true accuracy. Note that in
practice a user of this model would only have direct access
to the information in the dotted line, the model’s scores
sM (x), and the true accuracy of the model AM (x) would
be unknown. The third panel shows the Calibration Bias,
sM (x)−AM (x), as a function of x, where for this simulated
problem and hypothesized model the calibration bias ranges
between 0 and 1.

From this figure, we can see that to compute the expected
accuracy Ak∗ or calibration error CEk∗ , for say class k∗ =
1, we need to compute the expected value of AM (x) or
CEM (x), with respect to p(x), in the decision region R1

corresponding to k∗ = 1, i.e., over the shaded region in the
plots, where the model always makes the prediction k∗ = 1.
As mentioned in the paper, this can be done in practice by
sampling pairs of x’s and y’s from the region R1.

This example is only intended to provide some intuition
to the reader for a low-dimensional simple situation. In
practical problems of interest, e.g., in deep learning models,
the input space will often be high-dimensional, and direct
estimation or visualization of quantities such as AM (x) and
CEM (x) as a function of x is impractical.

Appendix 2: Additional Results

ADDITIONAL RESULTS ON SVHN DATA

There are 10 classes in the street view house number(SVHN)
data, one for each digit. Mean posterior estimates (MPE)
and 95% credible intervals for 10 classes are plotted in
Figure 5. Resnet-100 predictions are relatively accurate
and well-calibrated in terms of calibration bias on all of 10
classes. The posterior probabilities of the most and least
accurate predictions on SVHN are plotted in Figure 6. Al-
though there is obvious overlap of credible intervals between
class nine and three in Figure 5, the model is quite certain
that class two and nine are the most and the least accurate,
by ranking samples from the posterior of classwise accu-
racy. Aggregate results for 100 independent trials of active
learning strategy to detect the least accurate class and the
most biased class on SVHN are given in Figure 7. Success
rate of identifying the correct class in both of the scenarios
starts to converge within 2K queries, while random strat-
egy requires around twice as much the number of queries.
The variances of classwise accuracy and calibration bias
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in SVHN are relatively low compared to CIFAR-100 data,
which makes selecting the least accurate or the most biased
class more difficult. This is likely the reason why less sig-
nificant improvement with active learning is observed, as
shown in Figure 7.
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Figure 5. Mean posterior estimate and 95% credible intervals for
the classwise accuracy and calibration bias of Resnet-110 predic-
tions on SVHN. Classwise accuracies do not significantly differ.
Although there appears to be positive bias for all classes, we cannot
reject the hypothesis that there is no bias for the classes two and
seven at the 95% level.

ADDITIONAL RESULTS ON DIALOG DATA

The medical dialog dataset contains transcripts of conver-
sations between doctors and patients. Each utterance has
been labeled into 1 of 27 classes, each class corresponding
to a topic being discussed. The class distributions are highly
imbalanced (unlike CIFAR and SVHN). Mean posterior es-
timates (MPE) and 95% credible intervals for 27 classes
are plotted in Figure 8. More uncertainty is observed in
rare classes, e.g. OtherAddictions and Sex. The posterior
probabilities of the most and least accurate predictions are
plotted in Figure 9. It is highly likely that the most accurate
class is PreventiveCare, while we are less certain about Diet
as the least accurate class because the 95% credible inter-
vals of DizzyDentHearVision, MDLife, GeneralAnxieties
and Depression are all in the 95% credible interval span of
Diet.

Aggregate results for 100 independent trials of active learn-
ing strategy are given in Figure 10. The active learning strat-
egy detects the correct class within less than 500 queries,
while random selecting requires around 5K queries in the
scenario of detecting the least accurate class. The high ef-
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Figure 6. Posterior probabilities of the most and least accurate
predictions on SVHN. It is highly probably that most accurate
predicted class is two, and that the least accurate predicted class is
nine.
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Figure 7. Success rates of active learning vs. a random selection
strategy for determining the least accurate and most biased pre-
dicted classes on the medical dialog data, collected over 100 runs.

ficiency of active learning on this problem can likely be
explained by the fact that the label distribution is highly
imbalanced, so that the random selection policy has less
opportunity to explore low accuracy classes that are also
relatively rarely predicted.
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Figure 8. Mean posterior estimate and 95% credible intervals for
the classwise accuracy and calibration bias of HGRU predictions
on the medical dialogue classification dataset. The imbalance in
label distribution results in much more uncertainty for rare labels
than common labels.
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Figure 9. Posterior probabilities of the most and least accurate
predictions on SVHN. It is highly probable that most accurate pre-
dicted class is PreventiveCare, while the least accurate predicted
class is Diet.
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Figure 10. Success rates of active learning vs. a random selection
strategy for determining the least accurate and most biased pre-
dicted classes on the medical dialogue data, collected over 100
runs.


