
Barack’s Wife Hillary:
Using Knowledge Graphs for Fact-Aware Language Modeling

Robert L. Logan IV
rlogan@uci.edu

Nelson F. Liu
nfliu@cs.washington.edu

Matthew E. Peters
matthewp@allenai.org

Matt Gardner
mattg@allenai.org

Sameer Singh
sameer@uci.edu

Abstract

Modeling human language requires the ability
to not only generate fluent text but also en-
code factual knowledge. However, traditional
language models are only capable of remem-
bering facts seen at training time, and often
have difficulty recalling them. To address this,
we introduce the knowledge graph language
model (KGLM), a neural language model with
mechanisms for selecting and copying facts
from a knowledge graph that are relevant to
the context. These mechanisms enable the
model to render information it has never seen
before, as well as generate out-of-vocabulary
tokens. We also introduce the Linked WikiText-
2 dataset, a corpus of annotated text aligned to
the Wikidata knowledge graph whose contents
(roughly) match the popular WikiText-2 bench-
mark (Merity et al., 2017). In experiments, we
demonstrate that the KGLM achieves signifi-
cantly better performance than a strong base-
line language model. We additionally compare
different language model’s ability to complete
sentences requiring factual knowledge, show-
ing that the KGLM outperforms even very
large language models in generating facts.

1 Introduction

For language models to generate plausible sen-
tences, they must be both syntactically coherent as
well as consistent with the world they describe. Al-
though language models are quite skilled at generat-
ing grammatical sentences, and previous work has
shown that language models also possess some de-
gree of common-sense reasoning and basic knowl-
edge (Vinyals and Le, 2015; Serban et al., 2016;
Trinh and Le, 2019), their ability to generate fac-
tually correct text is quite limited. The clearest
limitation of existing language models is that they,
at best, can only memorize facts observed during
training. For instance, when conditioned on the text
at the top of Figure 1, an AWD-LSTM language

[Super Mario Land] is a [1989] [side-scrolling]
[platform video game] developed and published
by [Nintendo] as a [launch title] for their [Game
Boy] [handheld game console].

Date

21 April 1989
Q828322

platform game

Q8093

Nintendo
Q647249

Super Mario Land

Q186437

Game Boy

Q941818

handheld game consoleQ2281714

side-scrolling video game

Q1425505

launch game

Publication
Date genre

publisher

platform manufacturer

instance of

Figure 1: Linked WikiText-2 Example. A localized
knowledge graph containing facts that are (possibly)
conveyed in the sentence above. The graph is built by it-
eratively linking each detected entity to Wikidata, then
adding any relations to previously mentioned entities.
Note that not all entities are connected, potentially due
to missing relations in Wikidata.

model (Merity et al., 2018) trained on Wikitext-2
assigns higher probability to the word “PlaySta-
tion” than “Game Boy”, even though this sentence
appears verbatim in the training data. This is not
surprising— existing models represent the distri-
bution over the entire vocabulary directly, whether
they are common words, references to real world
entities, or factual information like dates and num-
bers. As a result, language models are unable to
generate factually correct sentences, do not gen-
eralize to rare/unseen entities, and often omit rare
tokens from the vocabulary (instead generating UN-
KNOWN tokens).

We introduce the knowledge graph language
model (KGLM), a neural language model with
mechanisms for selecting and copying information
from an external knowledge graph. The KGLM
maintains a dynamically growing local knowledge
graph, a subset of the knowledge graph that con-
tains entities that have already been mentioned in

the text, and their related entities. When generating
entity tokens, the model either decides to render
a new entity that is absent from the local graph,
thereby growing the local knowledge graph, or to
render a fact from the local graph. When render-
ing, the model combines the standard vocabulary
with tokens available in the knowledge graph, thus
supporting numbers, dates, and other rare tokens.

Figure 1 illustrates how the KGLM works. Ini-
tially, the graph is empty and the model uses the
entity Super Mario Land to render the first three
tokens, thus adding it and its relations to the local
knowledge graph. After generating the next two to-
kens (“is”, “a”) using the standard language model,
the model selects Super Mario Land as the parent
entity, Publication Date as the relation to render,
and copies one of the tokens of the date entity as
the token (“1989” in this case).

To facilitate research on knowledge graph-based
language modeling, we collect the distantly su-
pervised Linked WikiText-2 dataset. The underly-
ing text closely matches WikiText-2 (Merity et al.,
2017), a popular benchmark for language model-
ing, allowing comparisons against existing mod-
els. The tokens in the text are linked to entities in
Wikidata (Vrandečić and Krötzsch, 2014) using a
combination of human-provided links and off-the-
shelf linking and coreference models. We also use
relations between these entities in Wikidata to con-
struct plausible reasons for why an entity may have
been mentioned: it could either be related to an
entity that is already mentioned (including itself)
or a brand new, unrelated entity for the document.

We train and evaluate the KGLM on Linked
WikiText-2. When compared against AWD-LSTM,
a recent and performant language model, KGLM
obtains not only a lower overall perplexity, but also
a substantially lower unknown-penalized perplex-
ity (Ueberla, 1994; Ahn et al., 2016), a metric that
allows fair comparisons between models that accu-
rately model rare tokens and ones that predict them
to be unknown. We also compare factual com-
pletion capabilities of these models, where they
predict the next word after a factual sentence (e.g.,
“Barack is married to ”) and show that KGLM
is significantly more accurate. Lastly, we show that
the model is able to generate accurate facts for rare
entities, and can be controlled via modifications
the knowledge graph.

2 Knowledge Graph Language Model

In this section we introduce a language model that
is conditioned on an external, structured knowledge
source, which it uses to generate factual text.

2.1 Problem Setup and Notation
A language model defines a probability distribution
over each token within a sequence, conditioned on
the sequence of tokens observed so far. We denote
the random variable representing the next token as
xt and the sequence of the tokens before t as x<t,
i.e. language models compute p(xt|x<t). RNN lan-
guage models (Mikolov et al., 2010) parameterize
this distribution using a recurrent structure:

p(xt|x<t) = softmax(Whht + b),

ht = RNN(ht−1,xt−1).
(1)

We use LSTMs (Hochreiter and Schmidhuber,
1997) as the recurrent module in this paper.

A knowledge graph (KG) is a directed, labeled
graph consisting of entities E as nodes, with edges
defined over a set of relations R, i.e. KG =
{(p, r, e) | p ∈ E , r ∈ R, e ∈ E}, where p is a par-
ent entity with relation r to another entity e. Prac-
tical KGs have other aspects that make this for-
mulation somewhat inexact: some relations are to
literal values, such as numbers and dates, facts
may be expressed as properties on relations, and
entities have aliases as the set of strings that can
refer to the entity. We also define a local knowl-
edge graph for a subset of entities E<t as KG<t =
{(p, r, e) | p ∈ E<t, r ∈ R, e ∈ E}, i.e. contains
entities E<t and all facts they participate in.

2.2 Generative KG Language Model
The primary goal of the knowledge graph lan-
guage model (KGLM) is to enable a neural lan-
guage model to generate entities and facts from
a knowledge graph. To encourage the model to
generate facts that have appeared in the context
already, KGLM will maintain a local knowledge
graph containing all facts involving entities that
have appeared in the context. As the model decides
to refer to entities that have not been referred to
yet, it will grow the local knowledge graph with
additional entities and facts to reflect the new entity.

Formally, we will compute p(xt, Et|x<t, E<t)
where x<t is the sequence of observed tokens, E<t

is the set of entities mentioned in x<t, and KG<t is
the local knowledge graph determined by E<t, as
described above. The generative process is:

Super Mario Land is a 1989 side-scrolling platform video game developed and published by

AAA I nc.

Sony I nc.

. . .

. . .

Zzyzx, CA

pl at f or m game

Super Mar i o Land

. . .

s i de- scr ol l i ng game

Super
Mar i o Land Ni nt endo

Game Boy

pl at f or m
game

1989

PUBLI SHER

GENRE

PLATFORM

PUB. DATE

a

the

dog

...

company

Kabushiki

Koppai

Nintendo

...

Relation to
Existing Entity

Mention of a
New Entity

Not an
Entity Mention

Distribution over standard
vocabulary and aliases of et

Distribution over
standard vocabulary

standard vocabulary

aliases of et

SELF

Nintendo

pick from all entities

parent from local entities

Figure 2: KGLM illustration. When trying to generate the token following “published by”, the model first
decides the type of the mention (tt) to be a related entity, followed by identifying the parent (pt), relation (rt),
and entity to render (et) from the local knowledge graph as (Super Mario Land, Publisher, Nintendo). The
final distribution over the words includes the standard vocabulary along with aliases of Nintendo, and the model
selects “Nintendo” as the token xt. Nintendo and its related entities will be added to the local graph.

• Decide the type of xt, which we denote by
tt: whether it is a reference to an entity in
KG<t (related), a reference to an entity not
in KG<t (new), or not an entity mention (∅).
• If tt = new then choose the upcoming entity et

from the set of all entities E .
• If tt = related then:

– Choose a parent entity pt from E<t.
– Choose a factual relation rt to render,
rt ∈ {(p, r, e) ∈ KG<t|p = pt}.

– Choose et as one of the tail entities,
et ∈ {e|(pt, rt, e) ∈ KG<t}.

• If tt = ∅ then et = ∅.
• Generate xt conditioned on et, potentially copy-

ing one of et’s aliases.
• If et /∈ E<t, then E<(t+1) ← E<t ∪ {et},

else E<(t+1) ← E<t.
For the model to refer to an entity it has already
mentioned, we introduce a Reflexive relation that
self-relates, i.e. p = e for (p, Reflexive, e).

An illustration of this process and the variables
is provided in Figure 2, for generating a token in
the middle of the same sentence as in Figure 1.
Amongst the three mention types (tt), the model
chooses a reference to existing entity, which re-
quires picking a fact to render. As the parent en-
tity of this fact (pt), the model picks Super Mario

Land, and then follows the Publisher relation
(rt) to select Nintendo as the entity to render (et).
When rendering Nintendo as a token xt, the model

has an expanded vocabulary available to it, contain-
ing the standard vocabulary along with all word
types in any of the aliases of et.

Marginalizing out the KG There is a mismatch
between our initial task requirement, p(xt|x<t),
and the model we describe so far, which computes
p(xt, Et|x<t, E<t). We will essentially marginal-
ize out the local knowledge graph to compute the
probability of the tokens, i.e. p(x) =

∑
E p(x,E).

We will clarify this, along with describing the train-
ing and the inference/decoding algorithms for this
model and other details of the setup, in Section 4.

2.3 Parameterizing the Distributions
The parametric distributions used in the generative
process above are defined as follows. We begin
by computing the hidden state ht using the for-
mula in Eqn (1). We then split the vector into
three components: ht = [ht,x;ht,p;ht,r], which
are respectively used to predict words, parents and
relations. The type of the token, tt, is computed
using a single-layer softmax over ht,x to predict
one of {new,related, ∅}.
Picking an Entity We also introduce pretrained
embeddings for all entities and relations in the
knowledge graph, denoted by ve for entity e and
vr for relation r. To select et from all entities in
case tt = new, we use:

p(et) = softmax(ve · (ht,p + ht,r))

over all e ∈ E . The reason we add ht,p and ht,r

is to mimic the structure of TransE, which we use
to obtain entity and relation embeddings. Details
on TransE will be provided in Section 4. For men-
tion of a related entity, tt = related, we pick a
parent entity pt using

p(pt) = softmax(vp · ht,p)

over all p ∈ Et, then pick the relation rt using

p(rt) = softmax(vr · ht,r)

over all r ∈ {r|(pt, r, e) ∈ KGt}. The combina-
tion of pt and rt determine the entity et (which
must satisfy (pt, rt, et) ∈ KGt; if there are multi-
ple options one is chosen at random).

Rendering the Entity If et = ∅, i.e. there is
no entity to render, we use the same distribution
over the vocabulary as in Eqn (1) - a softmax using
ht,x. If there is an entity to render, we construct
the distribution over the original vocabulary and
a vocabulary containing all the tokens that appear
in aliases of et. This distribution is conditioned
on et in addition to xt. To compute the scores
over the original vocabulary, ht,x is replaced by
h′t,x = Wproj[ht,x;vet] where Wproj is a learned
weight matrix that projects the concatenated vector
into the same vector space as ht,x.

To obtain probabilities for words in the alias
vocabulary, we use a copy mechanism Gu et al.
(2016). The token sequences comprising each alias
{aj} are embedded then encoded using an LSTM
to form vectors aj . Copy scores are computed as:

p(xt = aj) ∝ exp
[
σ
((

h′t,x
)T

Wcopy

)
aj

]

3 Linked WikiText-2

Modeling aside, one of the primary barriers to in-
corporating factual knowledge into language mod-
els is that training data is hard to obtain. Standard
language modeling corpora consist only of text,
and thus are unable to describe which entities or
facts each token is referring to. In contrast, while
relation extraction datasets link text to a knowledge
graph, the text is made up of disjoint sentences
that do not provide sufficient context to train a
powerful language model. Our goals are much
more aligned to the data-to-text task (Ahn et al.,
2016; Lebret et al., 2016; Wiseman et al., 2017;

Yang et al., 2017), where a small table-sized KB is
provided to generate a short piece of text; we are
interested in language models that dynamically de-
cide the facts to bring it from the knowledge graph,
guided by the discourse.

For these reasons we introduce the Linked
WikiText-2 dataset, consisting of the same articles
appearing in the WikiText-2 language modeling cor-
pus, but linked to the Wikidata (Vrandečić and
Krötzsch, 2014) knowledge graph. Because the text
almost exactly matches WikiText-2,1 models trained
on Linked WikiText-2 can be directly compared.
Furthermore, because many of the facts in Wikidata
are derived from Wikipedia articles, we are guaran-
teed that the knowledge graph has a good coverage
of facts expressed in the text. The dataset is avail-
able for download at: http://REDACTED.URL.
Our system annotates one document at a time, and
consists of entity linking, relation annotations, and
post-processing. The following paragraphs de-
scribe each step in more detail.

Initial entity annotations We begin by identify-
ing an initial set of entity mentions within the text.
The primary source of these mentions is the human-
provided links between Wikipedia articles. When-
ever a span of text is linked to another Wikipedia
article, we associate its corresponding Wikidata
entity with the span. While article links provide a
large number of gold entity annotations, they are in-
sufficient for capturing all of the mentions in the ar-
ticle since entities are only linked the first time they
occur. Accordingly, we use the neural-el (Gupta
et al., 2017) entity linker to identify additional links
to Wikidata, and identify coreferences using Stan-
ford CoreNLP2 to cover pronouns, nominals, and
other tokens missed by the linker.

Local knowledge graph The next step iteratively
creates a generative story for the entities using rela-
tions in the knowledge graph as well as identifies
new entities. To do this, we process the text token
by token. Each time an entity is encountered, we
add all of the related entities in Wikidata as candi-
dates for matching. If one of these related entities
is seen later in the document, we identify the entity
as a parent for the later entity. Since multiple re-
lations may appear as explanations for each token,

1Varies slightly due to edits between download dates. In
correspondance with authors of WikiText-2, we were unable to
determine the exact text or snapshot used in the original data.

2https://stanfordnlp.github.io/
CoreNLP/

http://REDACTED.URL
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/

Tokens xt Super Mario Land is a 1989 side - scrolling platform video game developed

Mention type tt new ∅ ∅ related new related ∅
Entity Mentioned et SML ∅ ∅ 04-21-1989 SIDE_SCROLL PVG ∅

Relation rt ∅ ∅ ∅ pub date ∅ genre ∅
Parent Entity pt ∅ ∅ ∅ SML ∅ SML ∅

xt and published by Nintendo as a launch title for their Game Boy handheld game console .

tt ∅ ∅ ∅ related ∅ ∅ new ∅ ∅ related related ∅
et ∅ ∅ ∅ NIN ∅ ∅ LT ∅ ∅ GAME_BOY HGC ∅
rt ∅ ∅ ∅ pub ∅ ∅ ∅ ∅ ∅ R:manu / platform instance of ∅
pt ∅ ∅ ∅ SML ∅ ∅ ∅ ∅ ∅ NIN / SML GAME_BOY ∅

Table 1: Example Annotation of the sentence from Figure 1, including corresponding variables from Figure 2.
Note that Game Boy has multiple parent and relation annotations, as the platform for Super Mario Land and as
manufactured by Nintendo. Wikidata identifiers are made human-readable (e.g., SML is Q647249) for clarity.

we allow a token to have multiple facts.

Expanding the annotations Since there may be
entities that were missed in the initial set, as well
as non-entity tokens of interest such as dates and
quantities we further expand the entity annotations
using string matching. For entities, we match the
set of aliases provided in Wikidata. For dates, we
create an exhaustive list of all of the possible ways
of expressing the date (e.g. "December 7, 1941",
"7-12-1941", "1941", ...). We perform a similar
approach for quantities, using the pint library in
Python to handle the different ways of expressing
units (e.g. "g", "gram", ...). Since there are many
ways to express a numerical quantity, we only ren-
der the quantity at the level of precision supplied
by Wikidata, and do not perform unit conversions.

Example Annotation An example of our anno-
tations is provided in Table 1 corresponding to
the instance in Figure 1, along with the variables
that correspond to the generative process of the
knowledge graph language model (KGLM). The
entity mentioned for most tokens here are human-
provided links, apart from “1989” that is linked to
04-21-1989 by the string matching process. The
annotations indicate which of the entities are new
and related based on whether they are reachable
by entities linked so far, clearly making a mistake
for side-scrolling game and platform video

game due to missing links in Wikidata. Finally, mul-
tiple plausible reasons for Game Boy are included:
it’s the platform for Super Mario Land and it is
manufactured by Nintendo, even though only the
former is more relevant here. Even with these omis-
sions and mistakes, it is clear that the annotations
are rich and detailed, with a high coverage, and
thus should prove beneficial for training knowledge

Train Dev Test

Documents 600 60 60
Tokens 2,019,195 207,982 236,062
Vocab. Size 33,558 - -
Mention Tokens 207,803 21,226 24,441
Mention Spans 122,983 12,214 15,007
Unique Entities 41,058 5,415 5,625
Unique Relations 1,291 484 504

Table 2: Linked WikiText-2 Corpus Statistics

graph language models.

Dataset Statistics Statistics for Linked WikiText-2
is provided in Table 2. In this corpus, more than
10% of the tokens are considered entity tokens, i.e.
they are generated as factual references to informa-
tion in the knowledge graph. Each entity is only
mentioned a few times (less than 5 on average, with
a long tail), and with more than thousand different
relations. Thus it is clear that regular language
models would not be able to generate factual text,
and there is a need for language models to be able
to refer to external sources of information.

4 Training and Inference for KGLM

In this section, we describe the training and infer-
ence algorithm for KGLM.

Pretrained KG Embeddings During evaluation,
we may need to make predictions on entities and
relations that have not been seen during training.
Accordingly, we use fixed entity and relations em-
beddings pre-trained using TransE (Bordes et al.,
2013) on Wikidata. Given (p, r, e), we learn em-
beddings vp, vr and ve to minimize the distance:

δ(vp,vr,ve) = ‖vp + vr − ve‖2 .

We use a max-margin loss to learn the embeddings:

L = max
(
0, γ + δ (vp,vr,ve)− δ

(
v′p,vr,v

′
e

))
where γ is the margin, and either p′ or e′ is a ran-
domly chosen entity embedding.

Training with Linked WikiText-2 Although the
generative process in KGLM involves many steps,
training the model on Linked WikiText-2 is straight-
forward. Our loss objective is the negative log-
likelihood of the training data:

`(Θ) =
∑
t

log p(xt, Et|x<t, E<t; Θ),

where Θ is the set of model parameters. Note that
if an annotation has multiple viable parents such as
Game Boy in 1, then we marginalize over all of the
parents. Since all random variables are observed,
training can performed using off-the-shelf gradient-
based optimizers.

Inference While observing annotations makes the
model easy to train, we do not assume that the
model has access to annotations during evaluation.
Furthermore, as discussed in Section 2.2, the goal
in language modelling is to measure the marginal
probability p(x) =

∑
E p(x,E) not the joint proba-

bility. However, this sum is intractable to compute
due to the large combinatorial space of possible
annotations. We address this problem by approxi-
mating the marginal distribution using importance
sampling. Given samples from a proposal distribu-
tion q(E|x) the marginal distribution is:

p(x) =
∑
E
p (x,E) =

∑
E

p (x,E)

q (E|x)
q (E|x)

≈ 1

N

∑
E∼q

p (x,E)

q (E|x)

This approach is used to evaluate models in Ji et al.
(2017) and Dyer et al. (2016). Following Ji et al.
(2017), we compute q (E|x) using a discriminative
version of our model that predicts annotations for
the current token instead of for the next token.

5 Experiments

To evaluate the proposed language model, we first
introduce the baselines, followed by an evaluation
using perplexity of held-out corpus, accuracy on
fact completion, and an illustration of how the
model uses the knowledge graph.

5.1 Evaluation Setup

Baseline Models We compare KGLM to the fol-
lowing baseline models: (1) AWD-LSTM (Merity
et al., 2018): a strong LSTM-based language
model used by many approaches on WikiText-
2. (2) ENTITYNLM (Yang et al., 2017): an
LSTM-based language model with the ability to
track entity mentions. Embeddings for entities
are created dynamically, and are not informed
by any external sources of information. And
(3) EntityCopyNet: A variant of the KGLM
where tt = new for all mentions, i.e. entities are
selected from E and entity aliases are copied, but
relations in the knowledge graph are unused.

Hyperparameters We pre-train 256 dimensional
entity and relation embeddings for all entities
within two hops of the set of entities that occur in
Linked WikiText-2 using TransE with margin γ = 1.
Weights are tied between all date embeddings and
between all quantity embeddings to save memory.
Following Merity et al. (2018) we use 400 dimen-
sional word embeddings and a 3 layer LSTM with
hidden dimension 1150 to encode tokens. We also
employ the same regularization strategy (DropCon-
nect (Wan et al., 2013) + Dropout(Srivastava et al.,
2014)) and weight tying approach. However, we
perform optimization using Adam (Kingma and Ba,
2015) with learning rate 1e-3 instead of NT-ASGD,
having found that it is more stable.

5.2 Results

Perplexity We evaluate our model using the stan-
dard perplexity metric: exp

(
1
T

∑T
t=1 log p(xt)

)
.

However, perplexity suffers from the issue that it
overestimates the probability of out-of-vocabulary
tokens when they are mapped to a single UNK
token. This is problematic for comparing the per-
formance of the KGLM to traditional language
models on Linked WikiText-2 since there are a large
number of rare entities whose alias tokens are out-
of-vocabulary. That is, even if the KGLM identifies
the correct entity and copies the correct alias token
with high probability, other models can attain bet-
ter perplexity by assigning a higher probability to
UNK. Accordingly, we also measure unknown pe-
nalized perplexity (UPP) (a.k.a adjusted perplexity)
introduced by Ueberla (1994), and used recently
by Ahn et al. (2016) and Spithourakis and Riedel
(2018). This metric penalizes the probability of

PPL UPP

ENTITYNLM* 85.4 189.2
EntityCopyNet* 76.1 144.0
AWD-LSTM 74.8 165.8
KGLM* 56.5 106.9

Table 3: Perplexity Results. Results for models
marked with * are obtained using importance sampling.

AWD-
LSTM GPTv2 KGLM

Oracle NEL

nation-capital 0 / 0 6 / 7 0 / 0 0 / 4
birthloc 0 / 9 14 / 14 94 / 95 85 / 92
birthdate 0 / 25 8 / 9 65 / 68 61 / 67
spouse 0 / 0 2 / 3 2 / 2 1 / 19
city-state 0 / 13 62 / 62 9 / 59 4 / 59
book-author 0 / 2 0 / 0 61 / 62 25 / 28

Average 0.0/8.2 15.3/15.8 38.5/47.7 29.3/44.8

Table 4: Fact Completion: Top-k accuracy
(@1/@5,%) for predicting the next token for an incom-
plete factual sentence. See examples in Table 5.

UNK tokens by evenly dividing their probability
mass over U , the set of tokens that get mapped
to UNK . We can be compute UPP by replacing
p(UNK) in the perplexity above by 1

|U|p(UNK),
where |U| is estimated from the data.

We present the model perplexities in Table 3. To
marginalize over annotations, perplexities for the
ENTITYNLM, EntityCopyNet and KGLM are es-
timated using the importance sampling approach
described in Section 4. We observe that the KGLM
attains substantially lower perplexity than the other
entity-based language models (56.5 vs. 76.1/85.4),
providing strong evidence that leveraging knowl-
edge graphs is crucial for accurate language mod-
eling. Furthermore, KGLM significantly outper-
forms all models in unknown penalized perplexity,
demonstrating its ability to generate rare tokens.

Fact Completion Since factual text generation is
our primary objective, we evaluate the ability of
language models to complete sentences with fac-
tual information. We additionally compare with the
GPTv2 (Radford et al., 2019), a language model
trained on a much larger corpus of text. We select
6 popular relations from Freebase, and write a sim-
ple completion template for each, such as “X was
born in ” for the birthplace relation. We gen-
erate sentences for these templates for a number
of (X,Y) pairs for which the relation holds, and
manually examine the first token generated by each
language model to determine whether it is correct.

Table 4 presents performance of each language
model on the relations. The oracle KGLM is given
the correct entity annotation for X , while the NEL
KGLM uses the discriminative model used for im-
portance sampling combined with the NEL entity
linker to produce an entity annotation for X .

Amongst models trained on the same data, both
KGLM variants significantly outperform AWD-
LSTM; they produce accurate facts, while AWD-
LSTM produced generic, common words. KGLMs
are also competitive with models trained on orders
of magnitude more data, producing factual com-
pletions that require specific knowledge, such as
birthplaces, dates, and authors. However, they do
not capture facts or relations that frequently appear
in large corpora, like the cities within states.3 It is
encouraging to see that the KGLM with automatic
linking performs comparably to oracle linking.

We provide examples in Table 5 to highlight
qualitative differences between KGLM, trained on
600 documents, and the recent state-of-the-art lan-
guage model, GPTv2, trained on the WebText cor-
pus with over 8 million documents (Radford et al.,
2019). For examples that both models get factu-
ally correct or incorrect, the generated tokens by
KGLM are often much more specific, as opposed to
selection of more popular/generic tokens (GPTv2
often predicts “New York” as the birthplace, even
for popular entities). KGLM, in particular, gets
factual statements correct when the head or tail en-
tities are rare, while GPTv2 can only complete facts
for more-popular entities while using more-generic
tokens (such as “January” instead of “20”).

Effect of changing the KG For most language
models, it is difficult to control their generation
since factual knowledge is entangled with gener-
ation capabilities of the model. For KGLM, an
additional benefit of its use of an external source of
knowledge is that KGLM is directly controllable
via modifications to the KG. To illustrate this capa-
bility with a simple example, we create completion
of “Barack Obama was born on ” with the origi-
nal fact (Barack Obama, birthDate, 1961-08-04),
resulting in the top three decoded tokens as “Au-
gust”, “4”, “1961”. After changing the birth date to
2013-03-21, the top three decoded tokens become
“March”, “21”, “2013”. Thus, changing the fact in
the knowledge graph directly leads to a correspond-
ing change in the model’s prediction.

3This is not a failure of the KG, but of the model’s ability
to pick the correct relation from the KG given the prompt.

Input Sentence Gold GPTv2 KGLM

Both correct Paris Hilton was born in New York City New 1981
Arnold Schwarzenegger was born on 1947-07-30 July 30

KGLM correct
Bob Dylan was born in Duluth New Duluth
Barack Obama was born on 1961-08-04 January August
Ulysses is a book that was written by James Joyce a James

GPTv2 correct
St. Louis is a city in the state of Missouri Missouri Oldham
Richard Nixon was born on 1913-01-09 January 20
Kanye West is married to Kim Kardashian Kim the

Both incorrect The capital of India is New Delhi the a
Madonna is married to Carlos Leon a Alex

Table 5: Completion Examples: Examples of fact completion by KGLM and GPTv2, which has been trained on
a much larger corpus. GPTv2 tends to produce very common and general tokens, such as one of a few popular
cities to follow “born in”. KGLM sometimes makes mistakes in linking to the appropriate fact in the KG, however,
the generated facts are more specific and contain rare tokens. We omit AWD-LSTM from this figure as it rarely
produced tokens apart from the generic “the” or “a”, or “〈UNK〉”.

6 Related Work

Knowledge-based language models The model
proposed in this paper draws inspiration from two
lines of work. Ji et al. (2017) improves a language
model’s ability to track entities by jointly model-
ing named entity recognition and coreference. Our
model similarly tracks entities through a document,
improving its ability to generate factual information
by modeling entity linking and relation extraction.
We are also inspired by Ahn et al. (2016) that es-
tablishes the idea of leveraging knowledge graphs
in language models. The main difference between
our work is that the KGLM operates on a whole
knowledge graph, instead of a small, predefined set
of edges emanating from a single fixed entity.

Data-to-text generation Our work is also related
to the task of data-to-text generation. Recent work
has developed approaches for generating text from
tables of sports statistics (Wiseman et al., 2017),
lists and tables (Yang et al., 2017), and Wikipedia
info-boxes (Lebret et al., 2016). The primary dif-
ference between these works and ours is our moti-
vation. These works focus on generating coherent
text within a narrow domain (e.g. sports, recipes,
introductory sentences), and optimize metrics such
as BLEU and METEOR score. Our focus instead
is to use a large source of structured knowledge
to improve language model’s ability to handle rare
tokens and facts on a broad domain of topics, and
our emphasis is on improving perplexity.

General language modeling Also related are the
recent papers proposing modifications to the AWD-
LSTM that improve performance on Wikitext-

2 (Gong et al., 2018; Yang et al., 2018; Krause
et al., 2018). We chose to benchmark against AWD-
LSTM since these contributions are orthogonal,
and many of the techniques are compatible with
the KGLM. KGLM improves upon AWD-LSTM,
and we expect using KGLM in conjunction with
these methods will yield further improvement.

7 Conclusions and Future Work

By relying on memorization, existing language
models are unable to generate factually correct text
about real-world entities. In particular, they are
unable to capture the long tail of rare entities and
word types like numbers and dates. In this work,
we proposed the knowledge graph language model
(KGLM), a neural language model that can access
an external source of facts, encoded as a knowl-
edge graph, in order to generate text. We also
introduced Linked WikiText-2 containing text that
has been aligned to facts in the knowledge graph,
allowing efficient training of the model. In our eval-
uation, we showed that by utilizing this graph, the
proposed KGLM is able to generate higher-quality,
factually correct text that includes mentions of rare
entities and specific tokens like numbers and dates.

This work lays the groundwork for future re-
search into knowledge-aware language modeling.
The limitations of the KGLM model, such as the
need for marginalization during inference and re-
liance on annotated tokens, raise new research prob-
lems for advancing neural NLP models. Our dis-
tantly supervised approach to dataset creation can
be used with other knowledge graphs and other
kinds of text as well, providing opportunities for
accurate language modeling in new domains.

References
Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and

Yoshua Bengio. 2016. A neural knowledge language
model. ArXiv:1608.00318.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Proc. of NeurIPS.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. In Proc. of NAACL.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang,
and Tie-Yan Liu. 2018. Frage: frequency-agnostic
word representation. In Proc. of NeurIPS.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proc. of ACL.

Nitish Gupta, Sameer Singh, and Dan Roth. 2017. En-
tity linking via joint encoding of types, descriptions,
and context. In Proc. of EMNLP.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin
Choi, and Noah A. Smith. 2017. Dynamic entity
representations in neural language models. In Proc.
of EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Proc. of
ICLR.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and
Steve Renals. 2018. Dynamic evaluation of neural
sequence models. In Proc. of ICML.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with
application to the biography domain. In Proc. of
EMNLP.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing LSTM
language models. In Proc. of ICLR.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In Proc. of ICLR.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proc. of
INTERSPEECH.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Techni-
cal report, OpenAI.

Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hierar-
chical neural network models. In Proc. of AAAI.

Georgios P. Spithourakis and Sebastian Riedel. 2018.
Numeracy for language models: Evaluating and im-
proving their ability to predict numbers. In Proc. of
ACL.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Trieu H. Trinh and Quoc V. Le. 2019. Do language
models have common sense?

Joerg Ueberla. 1994. Analysing a simple language
modelÂ·some general conclusions for language
models for speech recognition. Computer Speech &
Language, 8(2):153 – 176.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. Proc. of ICML Deep Learning Work-
shop.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun,
and Rob Fergus. 2013. Regularization of neural net-
works using dropconnect. In Proc. of ICML.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. In Proc. of EMNLP.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W Cohen. 2018. Breaking the softmax bot-
tleneck: A high-rank RNN language model. In Proc.
of ICLR.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang
Ling. 2017. Reference-aware language models. In
Proc. of EMNLP.

http://cogcomp.org/papers/GuptaSiRo17.pdf
http://cogcomp.org/papers/GuptaSiRo17.pdf
http://cogcomp.org/papers/GuptaSiRo17.pdf
https://openreview.net/forum?id=rkgfWh0qKX
https://openreview.net/forum?id=rkgfWh0qKX
https://doi.org/https://doi.org/10.1006/csla.1994.1007
https://doi.org/https://doi.org/10.1006/csla.1994.1007
https://doi.org/https://doi.org/10.1006/csla.1994.1007
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489

